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Abstract. The non-existence of stringless monopole solutions in the Weinberg-Salam theory 
(except in the case in which the electromagnetic U( I )  is contained in the SU(2) factor of 
the gauge groi p) is usually ascribed to a combination of circumstances arising from the 
topology of the gauge group, from the underlying Lie algebra structure, and from the 
nature of the Higgs mechanism. Here we analyse this result from a geometric point of view, 
and show that no electroweak theory based on a compact connected non-semisimple group 
can admit stringless monopoles, unless the charge operator lies in the semisimple part of 
the Lie algebra. The analysis is independent of the mechanism used to break the symmetry. 

1. Introduction 

It is well known that the classical Yang-Mills-Higgs field equations admit non-singular 
finite energy solutions corresponding to magnetic monopoles (’t Hooft 1974, Polyakov 
1974; see Goddard and Olive 1978, Actor 1979, Craigie et a1 1982 for reviews). The 
existence of such ‘particle-like’ solutions has naturally attracted great interest, par- 
ticularly since it seems probable that grand unified gauge theories admit solutions with 
the same properties. Yet it has long been known that neither the Weinberg-Salam 
unified electroweak theory, nor quantum chromodynamics, admits such solutions at 
the classical level. (See Huang (1982) for a clear discussion of this point.) In view of 
the fact that these two theories are at present the only gauge theories with substantial 
experimental support, this remark is clearly of some significance. The non-existence 
of ‘stringless’ monopoles in the standard strong-electroweak SU(3) x SU(2) x U( 1 )  
model can be regarded as an experimental prediction-a prediction which sharply 
distinguishes this model from any grand unification scheme. As the experimental 
situation regarding the abundance of monopoles becomes clearer, this prediction may 
prove to be decisive. 

In view of these remarks, it is important that the basis of the SU(3) x SU(2) x U( 1 )  
monopole non-existence theorem be clearly understood. In the case of quantum 
chromodynamics, the argument is straightforward: the non-existence of static stringless 
monopoles follows directly from the energy finiteness condition. In fact, Deser (1976) 
has shown quite generally that the pure gauge field equations (that is, with no sources) 
for a connected compact semisimple gauge group admit no static finite energy solutions 
in Minkowski space. 

The situation in the Weinberg-Salam case is rather less clearcut. Deser’s result is 
not applicable here ; instead, it is argued that the monopole non-existence result arises 
because of the inability of the Higgs fields to realise their boundary conditions at 
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spatial infinity in a topologically non-trivial way. This property of the Higgs fields may 
in its turn be related to the topological structure of the gauge group (see Goddard and  
Olive 1978). Without going into the details, we merely observe that this argument 
depends on the details both of the Higgs mechanism and of the global structure of 
the gauge group. 

The dependence of the monopole non-existence result on  the workings of the Higgs 
mechanism is noteworthy, since this mechanism is widely regarded as the least satisfac- 
tory aspect of the Weinberg-Salam model. Although no  entirely satisfactory substitute 
has yet been proposed, it seems quite conceivable that the Higgs mechanism may 
ultimately be replaced by some other symmetry-breaking technique. It is natural to 
ask whether such a replacement would affect the non-existence theorem. In a similar 
vein, let us remark that the global structure of SU(2) XU( 1 )  is rather remote from most 
phenomenological applications of the Weinberg-Salam theory, it being the Lie algebra 
which determines, for example, the spectrum of intermediate vector bosons. The 
dependence of the monopole non-existence theorem on the global structure of SU(2) x 
U(1)  thus leads us to ask whether the theorem can be circumvented by replacing 
SU(2) X U (  1) by a locally isomorphic group with a different global structure. 

Although these remarks are of course highly speculative, they d o  serve to underline 
the importance of establishing a precise basis for the assertion that stringless monopoles 
cannot arise from the electroweak fields alone. It should perhaps be remarked that if 
it were indeed possible in some way to circumvent the non-existence theorem, the 
corresponding monopoles could well be relatively light and  thus ultimately accessible 
to direct experimentation. We therefore ask: what are the minimal assumptions 
necessary to exclude 't Hooft-Polyakov-type monopoles from gauge theory based on 
the Weinberg-Salam algebra? 

From a mathematical point of view, gauge theory finds its most natural formulation 
in terms of the geometry and topology of fibre bundles (see, for example, Trautman 
1970, Drechsler and  Mayer 1977, Daniel and Viallet 1980, Bleecker 1981). The 
geometric description is particularly appropriate in the case of magnetic monopoles 
(Wu and  Yang 1975). We therefore expect that it may be of great interest to analyse 
the Weinberg-Salam monopole non-existence theorem from this point of view. The 
objective of the present work is to carry out such an  analysis at the greatest possible 
level of generality, with the intention of obtaining a unified view of the non-existence 
of stringless monopoles in certain gauge theories. Apart from its intrinsic interest, the 
fibre bundle approach has the virtue that it now proves to be possible to derive the 
relevant results with far fewer initial assumptions than are required in the usual analysis. 
In particular, we shall find that the non-existence of monopoles in the Weinberg-Salam 
theory can be  deduced without any information whatever regarding the behaviour (or 
indeed the existence) of the Higgs fields. Further, it will be seen that the global structure 
of the gauge group plays only a minor role in this discussion. The key feature of 
SU(2) XU(1) from this point of view is its Lie algebra. These conclusions virtually 
rule out any possibility of modifying the Weinberg-Salam theory to accommodate 
stringless monopoles (except in the unphysical case in which the electromagnetic U(1) 
is contained in the SU(2)  factor), other than by considering grand unified theories. 

2. The geometric characterisation of stringless monopoles 

The geometric structures underlying the Dirac and 't Hooft-Polyakov monopoles have 
been discussed in the literature (for example, Trautman 1979, Goddard and  Olive 
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1978, Quiros et a1 1982) and need only be examined here in order to stress certain 
salient features. 

It is well known that the field of a static magnetic monopole, which we regard here 
as a U( 1 )  gauge field, cannot be represented by a single vector potential which is well 
defined everywhere in the region exterior to the monopole. This is a result of the fact 
that a monopole field arises from a connection in a non-trivial principal fibre bundle 
which does not admit a global section. Any attempt to use a single potential gives rise 
to an  artificial singularity, the so-called 'Dirac string'. 

The various non-trivial principal bundles over a given base manifold are classified 
according to the general theory of characteristic classes (see, for example, Kobayashi 
and Nomizu 1969), which in the case of U ( l )  reduce to a special case of the Chern 
classes. The integral of the first Chern class for a monopole field over a 2-sphere 
enclosing the monopole is related to the latter's magnetic charge. From this statement 
it is clear that in order for a magnetic monopole to exist, i t  is essential that the 
electromagnetic U (  1 ) buncle should admit non-zero primary characteristic classes. This 
alone is sufficient for our purposes; we need not go further into the details of the 
topological interpretation of magnetic charge (see Quiros et a1 1982). 

Now let us turn to the 't Hooft-Polyakov monopole, which corresponds to a solution 
of the combined Yang-Mills-Higgs field equations. If these equations are interpreted 
physically as the basis of a unified electroweak theory, with SU(2)  breaking down to 
U( 1 )  (see Georgi and  Glashow 1972), then the electromagnetic part of the 't Hooft- 
Polyakov field does indeed correspond to the field of a magnetically charged particle. 
Yet the full solution is free of all singularities. As Trautman (1979) has pointed out, 
this has the following simple geometric interpretation. The absence of 'strings' at  the 
SU(2) level means that the 't Hooft-Polyakov field arises from a connection in a triuial 
principal SU(2) bundle. Now the breakdown of SU(2) to U(1) corresponds to the 
reduction (Kobayashi and  Nomizu (1963) of this SU(2) bundle to the electromagnetic 
U(1) bundle. The key point now is that the triviality of a principal bundle does not 
necessarily impose triviality on all of its sub-bundles. Thus we see how a magnetic 
monopole can arise, through symmetry breaking, from connections on a trivial principal 
bundle. This is, in fact, the characteristic topological structure underlying the 't 
Hooft-Polyakov monopole: a trivial SU(2) principal bundle which admits a non-trivial 
U( 1 ) sub-bundle. 

For an  arbitrary gauge theory based on a Lie group G which breaks down to a 
closed subgroup H, we shall define a generalised stringless monopole of type (G, H )  
to be a localised finite energy field configuration corresponding to a connection in a 
trivial principal bundle ( P ,  M, G) which admits a non-trivial sub-bundle (0, M, H) .  
Of course, the mere existence of the basic topological structure is not in itself sufficient 
to guarantee the existence of monopoles: in particular, the energy finiteness condition 
cannot always be satisfied. In the case of the 't Hooft-Polyakov monopole, the Higgs 
fields play an  essential role in rendering the energy finite; more generally, it is always 
necessary to introduce some kind of matter field in order to obtain finite energy. Thus 
it is never possible to establish the existence of monopoles within a given theory on  
the basis of topological or geometrical considerations alone. However, this comment 
is not valid when we attempt to show that some gauge theory does not admit monopoles. 
It may happen, for example, that for some particular choice of G and H, no  trivial G 
bundle admits a non-trivial H subbundle. In such a case, monopoles can be ruled out 
a priori, independently of the existence of Higgs or other fields. As will now be shown, 
this point of view permits the construction of monopole non-existence results on  the 
basis of very little information. 
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3. Non-existence of stringless gravitational monopoles 

In this section we discuss the non-existence of generalised stringless monopoles in the 
gravitational case. This may be regarded as a particularly simple illustration of the 
general approach being developed in the present work, although the result is of interest 
in its own right. 

One of the most attractive features of the bundle-theoretic approach to gauge 
theories is the fact that such a formulation automatically unifies the mathematical 
descriptions of the gravitational and non-gravitational fields. (Any space-time linear 
connection can be regarded as the ‘pull-back’ of a connection on the bundle of linear 
frames over space-time.) Unfortunately, there appear to be serious difficulties, par- 
ticularly at the dynamical level, in pursuing this analogy to its logical conclusion, and 
so the question of whether gravitation should be considered as a gauge field remains 
open. However, it is clear that any ‘gauge theory of gravitation’ should incorporate 
the observation that gravity is directly related to the structure of space-time, whereas 
such does not appear to be the case for the other interactions. This ‘aspect of the 
gravitational field can be accommodated by restricting the gravitational gauge bundle 
to be ‘soldered’ to the base manifold (Trautman 1970). That is, we take the principal 
bundle to be one of the various frame bundles over space-time. (See Kobayashi 1972, 
Trautman 1976; henceforth we treat only the case of the linear frame bundle, since 
theories based on the other frame bundles (affine, projective, etc) can be treated 
similarly.) 

The role of the metric in such a gauge theory is somewhat analogous (Trautman 
1979) to that of a Higgs field in a standard gauge theory, in the sense that the existence 
of a space-time metric reduces the bundle of linear frames to a sub-bundle of pseudo- 
orthonormal frames. That is, the metric ‘breaks’ GL(4, R) (the group of real 4 x 4  
invertible matrices) down to the Lorentz group. According to the discussion of the 
preceding section, then, a gravitational analogue of a stringless monopole would be 
constructed around the following basic topological structure: a trivial frame bundle 
admitting a non-trivial Lorentz sub-bundle. No such structure is possible, however. 
The triviality of the frame bundle is equivalent to the existence of a smooth global 
moving frame; the metric can then be used to construct a global pseudo-orthonormal 
moving frame. This in its turn gives a global cross section of the Lorentz sub-bundle, 
which must therefore be trivial. Thus we conclude at once that gravitational analogues 
of ’t Hooft-Polyakov monopoles do not exist. (See the recent work of Ross (1983) on 
the non-existence of Dirac gravitational monopoles.) 

In the preceding section it was pointed out that, in general, it is possible for a 
trivial principal bundle to admit a non-trivial sub-bundle. In the present case, however, 
this does not occur: the triviality of the frame bundle imposes a similar condition on 
any Lorentz sub-bundle. We shall say in such a case that the sub-bundle ‘inherits’ 
triviality from the original bundle. In order that generalised stringless monopoles of 
type (G, H)  should exist, it is clearly necessary (but by no means sufficient) that H 
sub-bundles of trivial G bundles should not always inherit triviality. Our immediate 
objective in the present work is to show that ‘inheritance of triviality’ is responsible 
for the non-existence of stringless monopoles in the Weinberg-Salam theory: that is, 
similar mathematical conditions underlie the gravitational and electroweak monopole 
non-existence results. The concept of inheritance can be analysed with the aid of the 
general theory of characteristic classes, to which we now turn. 
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4. Characteristic classes 

Let G be a n  arbitrary Lie group with Lie algebra 3, and let I k ( G )  denote the vector 
space of symmetric, Ad-invariant, multilinear mappings f: iek -+ R. (If G is Abelian, 
then I k ( G )  is just the space of symmetric mappings f: gk +R.) Let ( P ,  M, G) be any 
principal G bundle, with projection rr, over a base manifold M. If r is any connection 
on P, let R be the curvature form. Then for each f~ Zk(G), we define a real-valued 
2k-form f (R)  on P by (Kobayashi and Nomizu 1969) 

f ( f i ) (p) (x ,  ' ' ' X2k) 

where p E P, XI  . , . x*k are tangent vectors at P, and the summation is over all 
permutations CJ of { 1 . . .2k}. It is possible to show that for eachf (R)  so defined, there 
exists a unique 2k-form f(Cl)on M such that 

. i r*(JW)  =An). 
Like f (R) ,  f (R)  depends on the choice of r. However, the Bianchi identity implies 
that f ( R )  is closed, and an  important result due to Weil states that the corresponding 
de  Rham cohomology class [f(R)] is actually independent of the choice of r. This 
class is therefore determined purely by f and by the structure of ( P ,  M,  G), and  is 
called the characteristic class corresponding to J: In particular, we shall refer to the 
k = 1 classes as the primary characteristic classes. 

Since every trivial principal bundle admits a canonical connection with R = 0, 
Weil's result implies that all characteristic classes vanish for a trivial bundle. In view 
of the discussions of the preceding sections, it is clearly a prerequisite for the existence 
of stringless monopoles that the vanishing of all characteristic classes of a principal 
bundle should not necessarily annihilate the characteristic classes of its sub-bundles. 
Let us investigate this point. 

Let H be a closed Lie subgroup of G, and  let (Q, M, H) be a reduced sub-bundle 
of (P,  M, G). W e  denote the embedding of Q in P by b: Q -+ P. For each k, there is 
a natural restriction map P k :  I k ( G )  + I k ( H ) ,  since any Ad(G)-invariant multilinear 
mapping is automatically Ad(H) invariant upon being restricted to the Lie algebra 2cf 
of H. 

Now assume that ( P ,  M, G) is trivial. Let foe I k ( H )  be such that there exists 
f~ Zk(G) with P k : f - + f o ;  that is, take foe pkZk(G). Let To be an  arbitrary connection 
on Q, with curvature form R,. Then there exists a unique connection r on P with 
curvature from R such that b*R = Ro (Kobayashi and Nomizu 1963). Let fo(Ro) be a 
real-valued 2k-form on Q defined as above, let fo(Ro) be the corresponding form on 
M,  and let XI . . . X 2 k  be any 2k tangent vectors at X E  M. Then if q E Q satisfies 
.ir(q)=x, and if XI. .  . X>k are tangent vectors at q which satisfy n-*Xi = 
x,, . . . , .ir*X2, = X*k, we have 

fO(RO)(x)(xl . * . X2k) 

=fo(Qo)(q)(Xt . . . X*k) 

1 
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Thus fo(Ro) = f(R),  and the respective cohomology classes coincide. The triviality of 
(P ,  M,  G)  therefore directly implies [fO(RO)] = 0. Extending the terminology of the 
preceding section, we shall say that the characteristic class [70(R0)] ‘inherits triviality’ 
from (P,  M,  G). Clearly, the characteristic classes of (0, M, H) which inherit triviality 
are precisely those which correspond to the elements of pklk(G).  

The above discussion serves to clarify the conditions which must be obtained if 
stringless monopole solutions are to exist within a given gauge theory. Suppose, for 
example that pk lk(G)  = l k ( H )  for all k. Then the stringless monopoles of type (G, H) 
cannot exist, since in such a case all characteristic classes of (0, M, H) inherit triviality. 
In fact, however, this condition is not usually satisfied, since the Ad(H) invariance of 
a symmetric multilinear mapping is not sufficient to guarantee that it will be Ad(G) 
invariant. The characteristic classes corresponding to elements of I k ( H )  which do not 
lie in p k l k ( G )  are unaffected by the triviality of ( P ,  M,  G), and so it becomes possible 
for (0, M, H) to be non-trivial. The initial step in determining whether (G, H) 
monopoles can exist thus involves a study of the spaces pklk(G).  We shall carry out 
this analysis for gauge theories of the electroweak interaction. 

Before leaving the general theory, we make the following remarks. Firstly, consider 
the case in which G is Abelian. Then, as was pointed out earlier, I k ( G )  and Zk(H) 
are simply the spaces of symmetric k-linear real-valued mappings on %ik and %“ 
respectively. It is easily seen that each pk is surjective in this case, that is, pk I (G)=  
Zk(H)  for every k. Hence, stringless monopoles cannot exist in any Abelian gauge 
theory-they are a strictly ‘non-Abelian’ phenomenon. 

Secondly, we wish to emphasise the fact that the theory of characteristic classes 
has enabled us to translate a topological question (concerning the existence of non- 
trivial sub-bundles of trivial principal bundles) into a question concerning I k ( G )  and 
Zk(H). But the structures of these spaces are determined purely by those of G and H. 
The entire duscission is altogether independent of the behaviour of the Higgs fields. 
(Indeed, Weil’s theorem implies that it is independent of all fields.) 

5. The role of inheritance in electroweak theories 

We now specialise the above discussion in order to consider stringless monopoles in 
electroweak theories. In this case, we have a Lie group G (not necessarily semisimple) 
which breaks down to the electromagnetic U( 1 )  gauge group. The latter is generated 
by some fixed linear combination of elements drawn from a Cartan subalgebra (denoted 
by %) of the Lie algebra 9. Thus, U(1) is a subgroup of a maximal torus (denoted 
by T) of G.  

As usual, we represent the G gauge fields as ‘pull-backs’ of connections in a principal 
bundle ( P ,  M,  G). The breakdown of G to U( 1 )  means that ( P ,  M, G)  admits a reduced 
sub-bundle ( E ,  M,  U( 1 ) ) ;  this is equivalent (Kobayashi and Nomizu 1963) to the 
existence of a global section of the associated bundle of ( P ,  M, G )  with standard fibre 
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G/U( 1). The existence of this section implies the existence of a global section of the 
associated bundle with standard fibre G/T, so that we may assume that (P, M, G )  also 
admits a reduced sub-bundle (Q, M, T), which we shall call the 'maximal toral sub- 
bundle'. The electromagnetic bundle is then a sub-bundle of (0, M, T). It is to be 
emphasised that we are not assuming here that the symmetry breaking proceeds by 
stages G + T +  U( 1); we merely propose to make use of the mathematical observation 
that (Q,  M, T) can in fact be constructed. 

Our objective is to examine the effect on ( E ,  M, U())) of assuming that (P, M, G) 
is trivial. We do this by first considering the inheritance problem for (P, M, G)  and 
(Q,  M, T), and subsequently examining the effects on ( E ,  M, U(1)), regarded as a 
sub-bundle of (Q,  M, T). Since both T and U( 1 )  are Abelian, this latter analysis is 
relatively straightforward. The central problem is the determination of the set of 
characteristic classes of (Q, M, T) which inherit triviality from (P, M, G). This can be 
carried out with the aid of standard theorems. 

Given a Cartan subalgebra % of the Lie algebra 9, let N denote its normaliser in 
the Lie group G. That is 

N = {g E G such that Ad(g)V c %}. 

Let T be the maximal torus corresponding to %; then T is a normal subgroup of N. 
For reasons to be discussed later, we refer to N/T as the generalised Weyl group of %. 
If g E N, A E %, and t E T, then Ad(gt)A = Ad(g)A since T is Abelian. Thus Ad( w)A 
is well defined for any w E W = N/T, and the generalised Weyl group can be regarded 
as a group of linear transformations of %'. 

For each k, let Ik,(T) denote the subspace of Ik (T)  which consists of Ad(W)- 
invariant elements. The following theorem is fundamental (Kobayashi and Nomizu 
1969, p 299). 

Theorem I. Let G be a compact Lie group with Lie algebra 9, and let % be a Cartan 
subalgebra of 9 with corresponding maximal torus T. If 9 = Ad(G) %, then each 
restriction mapping P k :  Zk(G) + Ik(T) maps I k ( G )  isomorphically onto IE,(T). 

This theorem gives a precise characterisation of p k I k ( G )  as the Weyl-invariant 
subspace of Ik(T). Combining theorem 1 with our earlier discussions, we obtain a 
theorem specifying the characteristic classes of (Q, M, T) which inherit triviality. 

Theorem 2. Let (P, M, G)  be a trivial principal bundle with compact structural group 
G, and let the Lie algebra 9 satisfy ie = Ad(G) %', where %' is a Cartan subalgebra. If 
T is the corresponding maximal torus, then the characteristic classes of any maximal 
toral sub-bundle which inherit triviality are precisely those generated by ZL(T), for 
all k 

We now turn to the second part of the analysis mentioned above, that is, to the 
relationship between the maximal toral sub-bundle (0, M, T) and the electromagnetic 
bundle ( E ,  M, U(1)).  The Lie algebra of U( 1 )  is a one-dimensional subspace of %'; 
we take a basis { q } ,  where q is the charge operator. Henceforth we shall be mainly 
interested in the case k =  1, that is, in the primary characteristic classes, which are 
closely related to the magnetic charge of a monopole. Assume that there exists an 
element f~ I ; (  T )  with f(q) f 0. Let f0€ I ' (U(  1 )) and consider 
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Since f o ( q )  and f ( q )  are just real numbers, f' is an element of IL(T) which, when 
restricted to the Lie algebra of U(  l ) ,  coincides with fo. Since T and U( 1 )  are Abelian, 
it follows that if the characteristic class generated by f' is zero, then every primary 
characteristic class of ( E ,  M, U( 1 ) )  will vanish. But theorem 2 states that the characteris- 
tic class (of (0, M ,  T)) generated byf will vanish if ( P ,  M,  G)  is trivial, provided that 
G satisfies certain conditions. These remarks complete our general Study of the 
consequences of taking (P, M, G )  to be trivial. The discussion may be summarised as 
follows. 

Theorem 3. Let (P, M, G)  be a trivial principal bundle with compact structural group 
G, let the Lie algebra of G satisfy ie = Ad(G) % (where Ce is a Cartan subalgebra 
corresponding to a maximal torus T), and let U ( l )  be generated by 4, a fixed linear 
combination of elements of %'. Then if Z!,,(T) contains any element which does not 
annihilate 4, the primary characteristic classes of any sub-bundle ( E ,  M,  U( 1))  inherit 
triviality from (P, M,  G). 

In physical language, this means that if a Lie group G of the type described is 
taken as the gauge group of a unified electroweak gauge theory, and if IL(T) contains 
any element which does not annihilate the charge operator, then the gauge theory in 
question does not admit stringless magnetic monopoles of the 't Hooft-Polyakov type. 
The structure of the (generalised) Weyl group is thus seen to play a central role in the 
question of whether a particular gauge theory gives rise to such monopoles. 

The remainder of this work is devoted to an examination of the consequences of 
theorem 3. First, we show in detail the way in which gauge theories based on semisimple 
G are able to avoid the inheritance problem, and second, we use theorem 3 to show 
that inheritance is directly responsible for the non-existence of stringless monopoles 
in electroweak theories of the Weinberg-Salam type. 

6. Semisimple electroweak gauge groups 

Since stringless monopoles are known to exist in the SU(2) electroweak theory, it is 
clear that one or more of the hypotheses of theorem 3 must be violated here. We now 
examine this, without giving the proofs in full detail. 

Let G be a connected semisimple Lie group with Lie algebra 3, and let (e be a 
Cartan subalgebra of '3. We wish to show that Ce = Ad(G) (e. (See Varadarajan (1974) 
for the background.) The fact that G is connected allows us to reduce this equation 
to the following algebraic form. Let Ce= (eOd be a direct sum decompositon. Then 
we must show that d = [d, %I. Now d has a root-space decomposition, so that any 
element of d has the form Z CAXA, where the sum is taken over the (finite) set of roots 
A, and [H, XA]=A(H)XA where A is a root, and H E  (e. Let { H A }  be the natural basis 
of % generated by A. Since { H A }  is finite, it is always possible to find H E % which is 
orthogonal (with respect to the Cartan-Killing form) to none of the HA. Thus A (H) # 0 
for every A E A. Given any Z CAXA E d, we can construct Z (CAXA/A(H)) E d. Then 

which means that sd c [d, %I. But it is obvious that [d, %'] C_ d, and so we obtain the 
desired result. Hence 9 = Ad(G) (e for every connected semisimple G. 



Non-existence of ' t Hooft- Polyakov magnetic monopoles 3295 

In order to proceed, we require some information concerning the generalised Weyl 
group W. It is a remarkable fact that, in the case of a connected compact semisimple 
group G, W can in principle be determined by purely algebraic methods (that is, without 
further information about the global topology of G). We now discuss this important 
point. 

Let { H A }  be the basis of % introduced above. For each A, let SA be the reflection 
in the hyperplane orthogonal to HA ; that is, for any H E %, 

where B is the Cartan-Killing form. Then the group generated by all such SA is called 
the Weyl group. The Weyl group describes the symmetries of the root system A, and 
is thus determined in a purely algebraic way. The following theorem is standard 
(Varadarajan 1974, p 356). 

Theorem 4. Let G be a connected compact semisimple Lie group with Lie algebra 3, 
let % be a Cartan subalgebra corresponding to a maximal torus T, and let N be the 
normaliser of % in G. Then the Weyl group of the relevant root system is isomorphic 
to N/T. 

In the semisimple case, then, the generalised Weyl group W = N/T coincides with 
the Weyl group as usually defined. Therefore, the space IL(T) may in this case be 
described as the space of linear mappings f :  % + Iw which are invariant under every 
Weyl reflection. Clearly this implies f ( H A ) = O  for every A E A ,  and so (since {HA}  is 
a basis) f = O .  Thus IL(T) is zero for every compact connected semisimple G:  it 
contains no elements which fail to annihilate the charge operator. From theorem 3, 
we see that i t  is this fact which permits the construction of the topological structure 
underlying ' t  Hooft-Polyakov monopoles. 

A number of comments may now be made in connection with this discussion. 
Firstly, our proof does not of course imply that stringless monopoles can be constructed 
in every electroweak theory based on a compact connected semisimple gauge group. 
There are several other physical and mathematical conditions which must also be 
satisfied if such a construction is to be possible. 

A second noteworthy point concerns the type of information on which this 
demonstration is based. The only strictly global condition imposed on G has been 
connectedness, since compactness is essentially an algebraic condition for a connected 
semisimple group. (A well known theorem of Weyl states that such a group is compact 
if and only if its Cartan-Killing form is negative definite.) The Lie algebra clearly 
plays the dominant role here; detailed topological information is not required. 

Finally, we wish to emphasise the significance of the generalised Weyl group, which 
here coincides with the Weyl group. The Weyl group has in fact arisen in previous 
discussions of magnetic monopoles (Goddard er a1 1977; see also the contributions 
of Olive and Cho in Craigie et a1 1982), in connection with the concepts of magnetic 
weights and duality conjectures. In that application, the Weyl group appears as a kind 
of gauge ambiguity in the weights. Here, however, the Weyl group plays a much more 
central role: the 't Hooft-Polyakov-type monopoles may in fact be said to 'owe their 
existence' to the Weyl symmetry. It should be stressed that the type of monopole being 
discussed in this paper (with U(  I )  as the unbroken group) is quite different to that 
considered by Goddard et a1 (1977) ; we are merely suggesting that the appearance of 
the Weyl group in both discussions may be of significance. 



3296 B T McInnes 

7. Non-semisimple electroweak gauge group 

We now consider the more realistic case in which G is not semisimple. This covers 
the Weinberg-Salam theory as well as its most satisfactory competitors (such as the 
'ambidextrous' theory of de Rujula et a1 (1977), based on SU(2) xSU(2) xU(1)).  

It is possible to show (Hochschild 1965) that the Lie algebra % of any compact 
connected Lie group may be decomposed as % = X@ go, where each element of X 
commutes with all elements of 9, and where go is a semisimple compact subalgebra: 
that is, So may be regarded as the Lie algebra of a connected semisimple Lie subgroup 
of G, which we denote Go. Let Y + Z E %, where Y E  X, Z E %o. Then by our earlier 
discussions, there exist gE Go, X E q0 (a Cartan subalgebra of %o), such that Z =  
Ad(g)X. But Ad(g) Y = Y, so that Y +Z = Ad(g)( Y + X ) .  The Cartan subalgebra of 
% corresponding to is % = X @ % o ;  hence we have shown %=Ad(G)V for any 
compact connected group. 

We now consider the generalised Weyl group W. In the non-semisimple case, 
theorem 4 does not apply; W can no longer be identified with the full reflection group 
of some basis of %. Rather than attempt to generalise theorem 4, we shall proceed as 
follows. Writing % = ?GO Z0 as above, let f be any linear mapf: % + U8 which annihilates 
V0. Since G is connected, we have Ad(G) %o c %o; thus for any Y + 2 E %' and w E W, 
Ad( w ) Z  E Z0. But Ad( w )  Y = Y ;  therefore f(Ad( w ) (  Y + Z ) )  =f( Y + Ad( w ) Z )  = 
f( Y )  =f( Y + Z ) ,  for any w E W, Y E  X, 2 E WO. Thus any f~ I'(T) (where T is the 
maximal torus corresponding to %) which annihilates V0 is Ad(W) invariant. 

Let Y be any non-zero element of X, and let f be a linear map f :  X+ R such that 
f( Y )  f 0; it is obvious that such an f always exists. Extend f to f :  %+R by defining 
f( = 0. Then f is a linear Weyl-invariant map on % which does not annihilate Y. 
It is clear from this discussion that if the charge operator q has a non-zero X component, 
then there always exists an element of I!,,(T) which does not annihilate q. From theorem 
3, we now obtain theorem 5 .  

Theorem 5. Let (P ,  M ,  G) be a trivial principal bundle with compact connected non- 
semisimple structural group G, and let q be a linear combination of elements drawn 
from a Cartan subalgebra of %, the Lie algebra of G. Let U( 1 )  be generated by q, and 
set % = 3%0 Yo, where %o is semisimple and each element of X commutes with 9. Then 
if q has a non-zero X component, the primary characteristic classes of any sub-bundle 
(E, M, U( 1) )  inherit triviality from ( P ,  M, G). 

In physical language, the X component of % corresponds to the weak hypercharge 
operator. The quantum numbers of weakly interacting fields are assigned in accordance 
with a fixed charge formula (such as, in the usual Weinberg-Salam case, q = Y + T3, 
where Y is hypercharge and T3 is weak isotropic spin) which is determined by physical 
conditions. This formula essentially describes the embedding of the electromagnetic 
U( 1 )  in the full gauge group. 

Theorem 5, which is our final result, may now be stated in physical language as 
follows. An electroweak gauge theory based on a compact connected non-semisimple Lie 
group admits no stringless magnetic monopoles, except in the case in which the charge 
operator lies entirely inside the semisimple part of the algebra. The result is independent 
of the mechanism used to break the symmetry. 

We remark that the exceptional case arises because the result of theorem 5 depends 
on the assumption that q has a non-zero X (or hypercharge) component). This is of 
little physical interest. 
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8. Conclusion 

The non-existence of 't Hooft-Polyakov monopoles in the Weinberg-Salam model- 
perhaps the most successful of all gauge theories-is a fundamental result in monopole 
theory. The work described here was prompted by the question of whether it is possible 
to modify the Weinberg-Salam model in such a way that the non-existence theorem 
can be circumvented. We have attempted to answer this question by isolating a minimal 
set of assumptions from which the non-existence result can be deduced. The conclusion 
is that the theorem can be proved purely from the following data concerning the 
electroweak gauge group G. 

(a) G is compact and connected. 
(b) G is not semisimple. 
(c) The charge operator is not an element of the semisimple part of the algebra of 

G. 
We do not need to make any assumptions as to the way in which the symmetry is 
broken, nor do we require information about the homotopy groups of G or its quotient 
spaces. 

It is very likely that this list can be reduced still further: assumption (a) is almost 
certainly unnecessary. Thus, the non-existence theorem can be circumvented only by 
modifying (b) or (c) or both. Modification of (c) is unlikely to be useful: in the 
Weinberg-Salam case, this would entail a charge formula q = T3, which is clearly 
unacceptable. We conclude, therefore, that embedding G in some larger, semisimple 
group (as is done in grand unified theories) is almost certainly the only physically 
acceptable way of circumventing the non-existence theorem. In particular, no modifica- 
tion of the Higgs mechanism can have this effect. 

We conclude with a discussion of the relationship of our approach to the more 
familiar existence theory for monopoles, as discussed for example by Goddard and 
Olive ( 1978). The latter is based on the observation that the Higgs fields define mappings 
from the 2-sphere at infinity to a certain manifold isomorphic to G/H,  where G is a 
gauge group broken by the Higgs mechanism to a subgroup H. This leads to the 
concept of topological charge, defined in terms of the homotopy group .rr,(G/H). The 
standard proof of the non-existence theorem then involves a demonstration that this 
group is trivial in the Weinberg-Salam case. Although this proof is manifestly indepen- 
dent of the particular way in which the Higgs mechanism is implemented (that is, the 
actual values of the Higgs fields, their transformation behaviour, and so on are 
irrelevant), it nevertheless rests on an additional assumption, independent of (a), (b) 
and (c) above: namely, the assumption that the model contains scalar fields obeying 
certain specific boundary conditions at spatial infinity. (This is true even if one expresses 
the topological charge by means of a formula which involves only gauge fields and 
not Higgs fields, because this formula (Goddard and Olive 1978) is derived from the 
boundary conditions on the covariant derivatives of the Higgs fields.) 

If one adds this assumption (together with some additional topological information) 
to (a), (b) and (c) above, then it becomes possible to relate the two methods of proof. 
A well known theorem in fibre bundle theory (Kobayashi and Nomizu 1963) essentially 
states that the H sub-bundles of a given C bundle are determined by cross sections of 
a certain associated bundle with standard fibre G/H.  With respect to a fixed choice 
of gauge, these cross sections may be interpreted as mappings from the base manifold 
to G/H. As Madore (1977) pointed out, the Higgs fields may be given a fibre bundle 
interpretation in this way. Each Higgs field determines a cross section of the bundle 
with standard fibre G/H,  and so fixes a sub-bundle of the given C bundle. Now if 
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the Higgs fields are all homotopically equivalent-that is, if .rr2(G/H) is zero-it follows 
that all H sub-bundles of the given G bundle are equivalent. Since every trivial G 
bundle admits a trivial H sub-bundle, we conclude in this case that all of the sub-bundles 
are trivial. To summarise, then, we see that if the Higgs fields responsible for the 
breakdown of G to H are all homotopic, then no trivial G bundle can admit a non-trivial 
H sub-bundle. This means, as in 0 2, that monopoles cannot exist. This discussion 
establishes the relationship of the present method to the standard one, in the context 
of the additional assumptions mentioned earlier. 
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